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ABSTRACT

| - Accelerated life testing of a product under more severe
31 than normal condition 1s commonly used to reduce test time and

cost. Data collected at such accelerated conditions is used to

obtain estimates of parameters of a stress translation function

which is then used to make inference about the products per-

A

5 formance under normal conditions. This problem is considered

? when the product is a p component series system with Weibull

i * distributed component lifetimes having a common shape parameter.
i ) A general stress translation function is used and estimates of

model parameters are obtained for various censoring schemes.
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1. INTRODUCTION

Accelerated life testing of a product is often used to
obtain information on its performance under normal operating
conditions. Such testing involves subjecting test items to
conditions more severe than encountered in the item's everyday
use. This results in decreasing the item's mean life and leads
to reduced test time and experimental costs. In engineering
applications accelerated conditions are produced by testing
items at higher than normal temperature, load, voltage, pressure,
etc., while in biological applications accelerated conditions
arise from large doses of a chemical or radiological agents. In
all cases the data collected at the high stresses is used to
extrapolate to some low stress where testing is not feasiable.

We shall consider the problem of accelerated life testing
when the item of interest is a p-component series system. Here
the failure of any one of p components causes the system to fail.
An observation on such a system consists of the system failure
time and knowledge of which component's failure caused the
system to fail. In the case where there is data only at opera-
ting conditions, David and Moeschberger (1978) describe some of
the estimation techniques.

Several papers have been written on analyzing accelerated
life tests for series systems. Assuming that for a given stress
V each failure mode follows an independent log normal distribu-
tion with parameters ﬂi(v) =a + Bi V and of constant with
respect toV, 1 =1, ..., P, Nelson (1973) obtains graphical
estimates of oy and Bi when there is no censoring. Maximum
likelihood estimates of oy, Bi and oi are obtained in Nelson
(1974).

Klein and Basu (198la) have considered the above problem
when the component lifetimes are exponentially distributed and
the data is type I, type II or progressively censored. Klein
and Basu (1980b) have considered this problem when the component
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lifetimes follow a Weibull distribution with unequal shape
parameters. In this report we consider this problem when the
components have a common, unknown shape parameter.

In section 2 we present the model we shall use for
accelerated lifetests in the competing risk framework. In
section 3 we obtain estimates of model parameters for type II
and progressively censored data. In section 4 an illustrative

example is presented.

2. THE MODEL

The problem considered in the sequel is as follows. Consi-
der a p component system with component lifetimes Xl, xz, ceey
Xp. Suppose that under normal stress conditions these compo-
nents have long lifetimes making testing at such conditions
unfeasible. To reduce test time and cost, s stresses, Vl, cees
Vs are selected and a life test is conducted at constant appli-
cation of the selected stress. We wish to use this information
to make inference about the component lifetimes under normal
stress conditioms.

Consider the following model introduced by Klein and Basu
(1980b) elsewhere.

At a stress Vi, i=1, ..., s assume that the jth component

has a hazard rate given by

hj(x. Vi oy, ﬁj) = sj(x. gj)lj(vi, gj) (2.1)

i=1, ..., 8 j=1, ..., p.

For sj(x, a) a Weibull form is assumed, that is

8y (x,0) = a® 1, a>0,t>o0, (2.2)

where o is the same unknown constant for each component and this
constant is independent of the stress V.

For A (V, gﬂ) we assume a model of the form

b

dim,

s
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Ay = A0, 8 = exp ( z-z-o BygBiaM) ) (2.3)

where Bjo(v) = 1 and le(V), ceuy ijj(v) are kj non-decreasing

functions of V. The ej(-)'s may differ from one component to

another.
This model includes the standard models, namely, the power

: B8
rule with Aj(v , E-j) = Ejov j;; The Arrhenius reaction rate
model with Aj(V, Qj) = exp(Bjo - le/V); and the Eyring model

B
for a single stress with Aj(v, gj) =V 1 exp(Bjo - szlv) as

special cases.

The model also can be derived from the interpretation of
the effects of a carcinogen on a cell as proposed by Armitage
and Doll (1961). To produce cancer in a single cell, k indepen-
dent events must occur. The effect of an increased dose of a
carcinogen is to increase the rate at which these k events occur.
If, for the jth disease, this increase 1s of the form
exp(szejL(V)) for 2 =1, ..., kj the model (2.3) is obtained.
If this increase is assumed linear the model of Hartley and
Sielkin (1977) is obtained. Thus the model of Hartley and
Sielkin is a first order Taylor Series approximation to (2.3)
when sz(V) =Vfor =1, ..., kj’

Consider an accelerated life test conducted at constant
applications of s stress level, Vl, ceey Vs. Let xil’ xiz,
ceay xip denote the component lifetimes of the p component
series system put on test at stress Vi. Assume that the compo-
nent lifetimes are independent. We are not allowed to observe
xil’ cesy xip directly but, instead, we observe
Yi = ninimum(xil, ceesy xip) and an indicator variable which
describes which of the p components is the minimum. We shall
use the method of maximum likelihood to estimate o and gd -
(Bjov cees Bjkj), j=~1, ..., p for various censoring schemes.
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3. ESTIMATION OF PARAMETERS

In this section we obtain maximum likelihood estimates for
a and ﬁj’ jJj=1, ..., p for type II and progressively censored
accelerated life tests. Since these estimates must be obtained
numerically we also show how initialestimates can be obtained by
a least square technique. We then obtain point and interval

estimates for the component parameters at the use stress.

3.1 TYPE II CENSORING

For this censoring scheme n, systems are put on test at

i
each of the s stress levels and testing continues until a

preassigned number r, have failed at which time testing at that
stress level is terminated. Let the ordered failure times of
the r, systems which fail be denoted by Yi(l)’ Yi(Z)’ cesy
1(r ) Let rij denote the number of the T systems which
failued due to failure of the j component ij=1, ..., p. The

contribution to the total likelihood from the n, systems on test

i
at stress Vi is

P rij r, Ty a-1
Li = jgl Aij exp(-Ti(a)lij)a I ) (3.1.1)
where
Ty

Tyl = T Yiw + (n,- 1)sz‘i‘(ri), 1=1, ..., 8 (3.1.2)

. s
The overall likelihood is L = ]I L, so

g=1 1
L § E lZ‘j.Be(V) T, (o) ;jﬁe(v)]
- r - a)exp
151 =1 13 |p2e L3RV i glp 12732
+ T, «ia + (a-l)Pi (3.1.3)
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The likelihood equations are

k
SwmL _ o (1) Ty
= ~T. " (a){ exp( B.,8,, (V. )} +—=—+ P, =0
6a izl i jzl zgl SEASE AN o i
(3.1.4)
where ri
(1 - : a,,.
Ty (@) 2; Yoy My * oy - r1”12"’{1(:1)
i=1, ..., 8, and
87 3 .
'”lL_ -
By, 121 OyulVy)[ngy~Ty (exp( Z Bygf32 (Vi)
j=1, «e.op u=1, ..., kj (3.1.5)

~

The solutions, a, sz, j=1, ..., p, =1, ..., kj of 3.1.4
and 3.1.5 are the respective maximum likelihood estimators.

The second partial derivative of L are

2, s r

T A ) >‘1T(2) (o) + z —1— where (3.1.6)
sa? i=1 =1 o?

r

i
(2) 1y » a ¢
T, (@) 9.2'1 Yl 701" + (ni-ri)Yi(ri)[OnYi(ri)lz ,

i=1, ..., 8.

2 8
-fpe e L TP @0 A 5=, i um 0, e Ky,

®P5u  1=1
(301.7)
) A, f AT, ()8, (V)8 (V) (3.1.8)
38,08y, 45 1374 (0P34 V1%, (Vg "

=1, ..., p u=0, ..., kJ w=20, ..., kj’

e e Y
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T —a— =0 J+#8 3=1, ..., p (3.1.9)
GBjuGB

g=1, ..., p u=20, ..., kj w=0, ..., k,.
3
To find E(T, @), Et{P @), E(1{?) @)) note that the
unordered Yig's have a Weibull distribution with density

- a-1 21 o0 =
f(yil) QAiYiQ' exp( Aiyiz), yiﬂ- > 0, i - l, csey s .

th

The m~ " order statistic from a Weibull has density

£(7, ) = k! (@,)y*71 [1-e
Yi(m) @-D1{n_ -m)! 1’Y4 (m)

- o
Yi(m) jm-1

exp(-(n -mrD)A;yg ), 0 <y o0 < (3.1.10)

Now
© !'li ! a o-1 a -1
E(Yi(m)) f (m-1) 1 (n -m)! y [(yo)y™ "1{1-exp(-y A))]

exp(‘(ni-m+1)yaki)dy

ni!

= (m~-1)'(n --m)!l1

ufl-e™%) m-lexp(-(ni-m+1)u)du

-

0
-1 n-1]
‘)\l[n]zo k(k [ e~ (aymmHIHK) 4

i k=0

o n m-1 m-l 1
A, Z (- 1) (n, -m+i+k) 2 °

Hence

P AL i -

el




Ty o ni m-1 k |BL 1
E(T, () = Zl)‘—i m kzo D7 (n —wrrD) *

m=
r.~-1l r,~1
r, |n i i
i i] k 1
R D At I e S
1770 0 (| W L | e D
= ri/)‘i (3.1.11)
Similarly, ’
m-1
k
T (-1)
i n m-1
(1) - L o . i k
E(Tg7 (@) = yq (A7y A e ¥ mzl ™ kZ (6, =it D) ;
i
r,-1 ;
ng| w1 (-1)k ik
s in(n, ~mtktl) + (n,-r)r —
i i 74771 | ko (n:l ri+k+1) ;
* gy -mir +1) ). (3.1.12) {

where Y = .5772156649 is Euler's constant.
Also, by similar computations

O ™,

2
erP (@) = - (g -1+ @ -2 AN+ ) ]

)\icx

m=1

Ty n m=1 K m-1 1 " §
+1 m g kZO D | T w2

: '[(u..z(ni-m+k+1) = 2Q(1=Y=h)) * o (n -mtktl))

[( tnlng~r +h+1))? ;

- 2(1-y- %i) ""(ni—ri+k+l) 1}. i i




2
Let a = —Edil@la. Let Cj be the column vector
sa?
824 2n T
'E(mm'éé—o "-,-E(gE‘SBL—) ’j=1, ceey Py and
Jo - jkj

let Bj be the kj+1 by kj+1 matrix whose elements are

b1, whl =

and cT = (C{, Cg, cees Cg. The value of g1 is obtained by
substituting 3.1.11, 3.1.12, and 3.1.13 in the appropriate places
in 3.1.6, 3.1.7, and 3.1.8.

By a theorem of Rao (1973)

1 1.T

B +FE F

1

F = B7IC, and E = a-C'B lC. (3.1.15)

A consistant estimator of I 1is obtained by using o and Qj,
j=1, ..., p in the appropriate expressions 3.1.11, 3.1.12,
and 3.1.13.

3.2 TYPE I PROGRESSIVE CENSORING

For this censoring scheme N1 items are put on test at
stress Vi. Let Tyys Tgos o 1'1Mi be fixed censoring times.
At censoring time LY L =1, ...,Mi-l , a8 fixed number Cips

items are removed from the study. At time Ty either a fixed
i

IEIEn - B, 8 T AT P A T S I AR S 7.
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number cyy items are removed from the test and testing

5 continues until all remaining items have failed or the test is

terminated with a random number c4yq items still functioning.

4 This test scheme has the advantage of allowing for some items

- with extremely long lifetimes to be encluded in the study.

¢

- Clearly the usual type I fixed time censoring is a special case
i of this consoring scheme with Mi = 1 and ¢ random. We assume

that Ni is sufficiently large so that at least Cip» =1, ...,

D&-l’ My items are still functioning to be censored.

My

Let n, = Ni - 121 Cik be the number of systems which

failed and let Yil’ YiZ’ ceey Yini denote the failure times.

Let rij denote the number of systems which fail from cause j at

C A e o R - M st o £ A i

stress Vi, ij=1 ..., p,1=1, ..., 8. The Ni items on test

at stress Vi’ i=1, ..., s contribute

L= T A M T())ni ;Iliy N (3.2.1)
= exp(- a))o 2.
174 1371 gmy 1%
to the total likelihood where
ny My
(3.2.2)

a a
T.(a) = X Yoo + ) 1,,c
i ge1 I g2y 1274

~ Again the total log likelihood is given by 3.1.3 with Ti(a) as
n

1 A .
in 3.2.2 and P, = } nY, . Maximum likelihood estimators a ;
2=1 :

and Bj’ =1, ..., p of & and Bj are obtained by solving
numerically 3.1.4 and 3.1.5 with

M,

n
i
(1) o ]
T, 7)) = ] Yo, m, , 4+ ) 1.0, oc.,- (3.2.3)
1 gmy 1074 T L T1e et

The second partial derivatives of L are given by 3.1.6, 3.1.7,
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3.1.8, and 3.1.9 with
'1‘(2) = ;i ¢ (nY, )% + ;i c, T Gnt,,)? (3.2.4)
i 221 12 i2 2= 12°18 i2

We now calculate E(Ti(a))’ E(Til)(a)), and E(Tiz)(a)).

Consider any of the s-stress levels. For notational con-
venience we shall suppress the subscript i. Let N items be put
on test. Let 0 = To € vee STy < Ty == be censoring points.
At time Tl’ 2=1, ..., M, cy items are removed from test. For
2=1, ..., M-1, cl is a fixed constant while cM is either ran-
dom or fixed depending on if testing is terminated at Ty OF not.

M

Let n = N - z ¢, be the number of items which are observed to
2=1

fail,

Let Yl’ ceesy Yn denote the failure times of the n failures.
For £ =1, ..., n, Yl = min(xll, ceny sz) where le is the
failure time of the jth component of the £th item which fails.

By assumption the Yl's have a Weibull distribution with survival
function

F(y) = exp(-}y®), y >0, a, A >0 (3.2.5)

Let fz denote the number of failures in the interval
[12_1, Tz)’ i=1, ..., M¥l. Let Upps k=1, ..., fg,
£=1, ..., Ml denote the fallure times of those fz items

which fail in the interval. Let

Fy=P(Y <Tp)=1- exp(-ATg) 1=1, ..., M1 (3.2.6)

denote the probability an item fails before time Tl’ and let
Cohen (1963) shows that for cy 2 fixed constant

NFQ for ¢ =1
E(fy) = 2-1 ¢

-7 =§)(r£ -Fy ) for £=1, ..., M1 (3.2.7)
k=1 Fy -

R
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For random 3,2.7 holds for % = 1, eess M,
M

£
L
Now for £ =1, ..., Mlet S = 2 Uzj and note that

j=1

£

L.

E(S,) = EE( § Ugyl£9)

i=1

= Q
= E(fz)E(Uzlez_l <Up < Tp) .

kit

The conditional density of Uzj given UQjE(Tz—l’ 12) is
akua-lexp(-kua) 3
£ . (u) = if T <u<rT
) Ty, 2-1 2 %
0 otherwise

Thus

BQUy, |ty < Uy < Tp) = F MG _+DF, ) - (AT§+1)iileg-r2_1)}

80

2-1 ¢ _ _
E(S) = FN - 5 DAt BT, ) - OpTRe = 2, o
1 (3.2.8)

and
E(S)) = 3 N(1 - (BDF), & = 1. 1

We now consider separately the two possible cases for Cye

Case 1. ¢, fixed.
For this case note that 3.4.8 holds for L = M + 1. So

M+l MEL _ o .o
Azzl E(Sy) = N 2Zl(xrz_lﬂ)rz_l - (AT H)F,

’2‘ 2 (ad® 4nF (AT +DF, )
- —= ™ +1)F, , - (AT, +1)F,] . 1
=17, 51 I 3 §

since T_ = 0, fb = 1 and Fﬁ+1 = 0 we have

P L T
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E(S,) = N - c, (AT, +1)} .
=1 F R gn 2R
My
Ni—g’Zl 1)
Thus E(Ti(a)) = N s 1=1, ..., 8. (3.2.9)
1

Similarly,

P ) = 35 M, - ¥ - ;mhd))
i

M,

- Z el ja u Ju exp(-u - Airgz)du
2=1 Ai‘ril

—Enki - Xitgzlnlirgll , where Y is Euler's constant.

The integral must be evaluated numerically.

Also by similar computations

2
ET? (@) = E}A—i Ny g = 2Y + Y - 202, QN + (D)

M

- EE

i - -(u=A,1%,)
17182
e ol [ (omu)iue du
i A 10

1 1718

- -(u-AT3p)
- 2% { ( fnu) ue du + )
1‘1(1

L
+ AT n A T3 (O /TEIY

Case II. cM random.

For this scheme all testing stops at time T, with Cy items

M

still functioning. Clearly

s




§
4
¢

) M'z-l ))‘:I
= N -~ Cop — £ .
L g1 *ogmp b
So from 3.4.7
M ¢

= [
E(c,) = F, (N - =) . (3.2.12)
u M 221 F,

Thus

T s A B AT F, - ( }
E N(1-(AT, +1)F —~= [ (A1, +1)F AT +1) "
i=1 -X-{ 2=1 F L

2
Hence
1 o Fiy
E(Ty(@) = yANFy - ] 1,01 - =)} (3.2.13)
i i 2=1
iM
i
Similarly,
Q
E('r(l)( ))-L{N [,fJtiTiMi tnue Ydu- 00\ F @ In(A Tiy )]
i @ Aia 1) ubnu iiMiiMiM 1“1
a
1 )‘fmi y
) 1

= A Tip A TE A TEy "”'(Aitmi)l’ IFip|}s (3.4.14)

and
a a
(2) 1 J\iT‘“‘i 2 -u AiTmi -u

E(T, " (@)= Nilf u( o) 2e Vdu-2 wif u Jue Vdu

A.a? 0

i

2 2
HCINE N +[(mxi) -(%'rm) AT 1"1 m ]
M, - A 1°‘ AiTm

fnu)? - -
2 cill f e ﬂ-___‘_{L e du-20n Ay / o u"’l ue du

M5 Fig

AfTig
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+(orAy)? (l—F /Fﬂ)+Ai'ru[(9nA )2-(0n T3,) ]

AiTmi M, /¥ [(n xi)z-wntm )11} . (3.2.15)

The asymptotic covariance matrix is obtained by making the
appropriate substitution in 3.1.6, 3.1.7 and 3,1.8.

3.3 INITIAL SOLUTIONS TO LIKELIHOOD EQUATIONS

To solve the iikelihood equation numerically initial
estimates of the parameters which are close to the maximum
likelihood estimates are needed. To obtain such estimates we
shall first obtain an estimate of o, then transform the data
to exponential observations and apply a least squares technique,

Consider any one of the s stress levels, vy Let &1 be an
estimate of o based on observations at this stress level only.
Such estimates can be obtained by using techniques described in
Mann, Schaffer and Singpurwalla (1974) or by graphical methods
described in Nelson (1972). These estimates are then pooled to
obtain an estimate &'6f a. If the 31'3 differ too much from
one stress level to the next this will cast doubt on the
assumption of equal shape parameters.

To obtain estipators of the B's we first make the trans—
formation W Yiéa, i=1, ..., 8, =1, ..., n,. If a is
equal to the true o then W 18 will have an exponential distri-

bution with hazard rate A

Let T (a) be defined by 3.1.1 or 3.2.1. One can show
that, using information collected at a single stress level only,

the maximum likelihood estimator of Aij is

N
%(rijl'ri(a)) (3.3.1)
say. For sufficiently large n
. k

- oot i N ., s APIRITYRY MR 5 € N PRI 7 R A

LR e
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A A n
and Var(ni) = AijE(Ti(a)) (3.3.2)

Least squares estimates of the sz‘s are obtained by using
weighted least squares as described in Draper and Smith (1966,
la)
p. 77-81). Let n be the sXl column vector of the ni's. Let ©

be the s x kj + 1 matrix defined by

8= (8,,(V)), 2 =0, ...,k 1=1, ...,

.

Kk )T. The model of

and let B be the column vector (BjO’ ooy B
b

3

3' T ran

interest is
n=296B+c¢ (3.3.3)

where E(€) = 0 and Var(e) = A where A is the diagonal matrix
with elements Var(ni) along the main diagonal. The weighted

least squares estimators of gd are
o

; 8 = 0Ta"tg)"1eTa™ln . (3.3.4) |
‘ The variance of these estimators is
1 Var('ﬁj) = (8Ta"10)"! | (3.3.5)

3.4. ESTIMATION OF USE STRESS PARAMETER

Suppose an accelerated lifetest as been conducted according
to one of the censoring schemes discussed in sections 3.1 or

3.2. Let ﬁj = (Bo, ooy ﬁk ) and a be the maximum likelihood

. J
estimators of ﬁj and a respectively. Llet I

A N - e 4

jj(zjj) be the

(estimated) asympotic variance-covariance matrix of ﬁj' Let

! Lyaya
(estimated) asymptotic covariance of sz and a, £=0, ..., kj,

) be the kj + 1 %X 1 column vector whose 2 element is the

j=1, ..., p. Let o;a(o;a) be the (estimated) asymptotic
variance of a. Let O be the matrix whose elements are all zero,
- then the asymptotic variance matrix of (8,, §2, AN a) is

of the form

B

|




< AW WP Bl s st S O A VRIS

. .
Ell 0 Ela
0 212 0 zZa . :
I=10 0 (3.4.1) ;
0 0 X
, P a
| [yT ST P2
¥ Lzla zaa Zpa oaaJ
~n ~
‘ Let I denote the estimated value of I.
i We shall use this information to make inference about component

life under some use stress, Vu.
Recall that the scale parameter of the time to failure
distribution is given by
4 kj
Ajy = exp 220 BigOp V)| » d=1, il (3.4.2)

@ :
4
% at the use stress. The maximum likelihood estimator of Aju is
given by
: k
’ -~ jl\
3 Aju = exp QZO Bygfya(V)| » 3=1, ..c,p . (3.4.3)

This estimator is biased by a factor of exp(oiu/Z) where

2 T
g = (L, 85;(V), ..oy ejkj (VI @, 8,0, ..., tijkj v N

. MR J PR

(3.4.4)
: *An unbiased estimator of Aju is given by
. n ~
i Ay = Mgy &xP(=05,/2), 3 =1, ..., p. (3.4.5)

Asympfotic (1 - y) x 100X confidence intervals for xju are given

e

(g ®5P(2)_y/29) s Ay €xB(Zy_ /205, (3.4.6)

H
|
i

i

where 21-1/2 is the l—y/2th percentage point of a standard

normal random variable.

]
]
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Consider now the cummulative hazard rate of the time to
failure distribution of the jth component which is, at time
t > 0 and stress Vu, given by

k
o
Aju(t) = t exp f le jl(vj) s 3 =1, ..., p. (3.4.7)

The maximum likelihood estimator of Aju(t) is, by the invari-

ance property,
- k

N a A
Ay (8) = tfxp 220 Bygbig (V)| » 3 =1, ..oy b (3.4.8)

Now, asymptotically @nAju(t) has a normal distribution with mean

Aju(t) and variance

oJ?u(:) = (1, 843V, eny By V), (1)) Iy zja] {ej‘l v,)]
! T 12
jo Tao
8., (V.)
=1, ee.,p, t>0 Jky e
n (t)
L J
(3.4.9)

Hence Aju(t) is a biased estimator of Aju(t). A reduced bias
estimator of Aju(t) is given by

~ n, A

Aju(t) -‘Aju(t)exp(dju(t)/Z) j=1, ..., p, t >0 (3.4.10)

-

which also has reduced mean squared error

A (1-Y)x100% confidence interval for A (t) is given by

Ju
(Aj (t)exP(‘zl Y/2 ju(t)) Aj (t)exp(zl Y/z ju(t)))

Let fsu(t) = exp(-AJu(t)), t > 0 be the survival function
of the jth component. The maximum likelihood estimator of

F&u(t) is

Fio® = exp-hi () 1=1, ., p, 620  (412)




]
9
Approximate (1LY)x1002 confidence intervals for ?su(t) are given %
by n n {
a exp(Zi_ 20:) 2 exp(-zl_ 20 u)
(Fj'u(t) /273 ’ Fju(t) Y/ J ), =1, «o.h P
(3.4.13) l
1 3.5. DEPENDENT RISKS
1
= . The assumption of independent causes of failure may be
: relaxed to Include a class of Weibull distributions with depen~
b dent causes of failure. To illustrate how this may be done we ;
1
shall consider the bivariate case with the obvious extension to ;
‘* more than two risks. 1
: Let Xl, X, denote the failure times of the two components ;
4

j in a series system. Let U1 be the time until the system fails 3
! due to failure of the first component alone, U2 the tiﬁe until

failure from the second component alone, and, UlZ the time
until simultaneous failure of both components. At a stress V
assume that U;s U,, U;, are independent Weibull random variables
with shape parameter a and scale parameter Aj(v, §j), ji=1, 2,
12, given by 2.1.2. Clearly Xl = min(Ul, U12) and X, = min

(Uz, U12)' xl and x2 are both distributed Weibull with shape ,

parameter o and scale parameter Al(v, gl) + AIZ(V, §12),
AZ(V, 92) + Alz(v, §12), respectively. The joint survival
function of (xl, Xz) is given by

Y.

. ?(xl, xz) = exp(-kl(v, —B-l)xl-AZ(v’ Ez)xz“klz(v, ﬁlz)““x(xl'xz)")' '

L . S

f.This is the bivariate Weibull distribution proposed by Lee and

~ Thompson (1974).
f To estimate the parameters we perform an accelerated life

L

test as described in the previous sections. The failure causes

‘ are now failure from the first component alone, the second
component alone, and, simultaneous failure from both components.
Estimators of B;s By» By, and a can be obtained as before.
Estimates of the parameters of xl and xz now follow in a Rt

- straight forward manner. -
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4. EXAMPLE

As an example of these procedures we shall consider an
example given in Nelson (1974a). The problem is to analyze an
accelerated life test conducted on Class-H insulation systems
for electric motors. There are three possible types of insula-
tion fallures corresponding to distinct parts of the insulation
system, namely Turn, Phase, and Ground, The failure cause is
determined by an engineering examination of the failed motor.

The purpose of the experiﬁent is to estimate the average
1ife of such insulation systems at a design temperature of
180°C. A median 1life of 20,000 hours is necessary for the
satisfactory performance of these insulation systems. To
reduce test time and cost an accelerated life test was conducted
at 4 accelerated temperatures, namely, 190° C, 220° C, 240° C,
and 260° C.

The accelerated life test was conducted by putting 10
motors on test at each of the 4 stress levels. Motors were run
until they failed, then the cause of failure was found and
isolated and motors were run until a second -failure occurred.
The results of this study are reported in Nelson (1974a). The
data followed a loglo normal distribution so the Weibull theory
results do not apply.

To illustrate the results of the previous section Nelson's

example is reporduced by simulating the life test using a

" Weibull model with shape parameter 1 for each failure cause.

_ The shift parameters are chosen by fitting an Arrhenius

Reaction Rate model to the estimated component medians obtained
by Nelson. The model is

A (V3 Qﬂ) - exP(Bjo + leejl(v))' j=1,2,3 (4.1)
where eil(V) = ~-1000/V for j = 1, 2, 3 and V is the temperature

in degrees absolute. The absolute temperature is 273.16 plus

the centrigrade temperature. The values of (BjO’ le), j=1,

g G

N
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2, 3 are as follows:
Table 4.2 True Values of BO’ Bl

Turn 8.2607 8,0106
Phase 3.7748 6.1253
Ground 13.0340 10.6487

Twenty Weibull observations were generated at each of the four
stress levels, The data are in Table 4.1.

Using the data at each stress level only the two order
statistic estimates of a discussed in Derbey (1966) are
a, = 2.224, a2 1.103, a3 1. 260 and a4 = 1.155. This
suggests an initial estimate of a = 1.425 for a.

The data is now transformed by letting Wiz Yiél.dZS’
i=1, ..., 8, 2=1, ..., n, and the least squares procedure
of section 3.3 is applied. The resulting initial estimate of

the R's are as follows
n N
BTURN = (4.3136, 4.9144), BPHASE = (1.5206, 3.8801) ,

and

BGROUND = (6.1364, 6.1194) .

The maximum likelihood estimates are obtained by using a
two stage Newton-Raphson procedure. In the first stage the
likelihood in maximized with respect to a using the B's
obtained in the previous stage. In the second stage, using
this a, the likelihood is maximized with respect to the B's.
The procedure is terminated when the relative increase in the
likelihood 18 no more than .0001.

In this case the two stage procedure terminated after 19
eteps. The maximum likelihood estimators are & = 1.0995,
EEURN = (6.6142, 7.5033), E?HASE (4.1230, 6.6608), and
QGROUND (8 2946, 8.6483). The estimated covariance matrix
of (ﬁTURN’ Bouase’ QGROUND’ u), computed from the results of
section 3.1 with ry = n,, is

¥ Y~ VIO T < e 0 -
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L= (8,615 4.285 .0014 0,0 .0014 0.0 ~.0035 )
4.285 2.138 0.0 0.0 0.0 0.0 0.0
.0014 0.0  25.387 12,577 .0014 0.0  ~.0035
0.0 0.0  12.577 6.245 0.0 0.0 0,0
.0014 0.0 .0014 0.0  15.894 7.959 -.0035
0.0 0.0 0.0 0.0 7.959 3.997 0.0
~.0035 0.0 -.00353 0.0 -.0035 0.0 .0092
\ . J

At the use stress of 180°C the estimates of component
survival at a mission time of 20,000 hours are .0763 for
turn failures. 90% confidence intervals for components
survival at 20,000 hours are
(.0013, .3688) for turn failures,
(.0004, .7872) for phase failures, and
(.00242, .8168) for ground failures.
The maximum likelihood estimates of the scale parameters

at 180°C are

~N ~
ATURN = ,0000480, APHASE = ,0000255, and AGROUND = ,0000206.
The reduced bias estimates are
ATURN = _,0000454, APHASE = .0000221, and AGROUND = ,0000184.

90% confidence intervals for the shape parameters are
(.0000275, .0000839) for turn failures,
(.0000105, .0000619) for phase failures, and
(.0000093, .0000455) for ground failures.
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